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1. Introduction

The processes of non-leptonic decays of B mesons are considered as one of the most

interesting topics at present time. They are sensitive to the physics of the standard model

and provide a nice possibility to search for new physics effects. The channel of two π-mesons

is very interesting because phenomenological analysis of the corresponding branchings and

CP asymmetries can be done to a good accuracy in a model independent way [1]. Last few

years B → ππ branching fractions and CP -asymmetries have been measured by BABAR [2]

and BELLE [3] collaborations.

Important progress has also been achieved in the theory. There was suggested a new

approach which is based on the idea of QCD factorization. The factorization allows, in

some sense, to constrain the strong interaction background in a model independent way

and therefore provides a theoretical basis for analysis of B−decays which can be considered

as an alternative to the traditional phenomenological fits.

The factorization theorem for nonleponic decays has been initially suggested in [4].

The statement has been proved by explicit calculations at the leading and next-to-leading

orders. The general proof of the factorization to all orders can be done using the so-

called soft-collinear effective theory (SCET) [5]. The application of SCET technique to

the two mesons decays has been formulated in [6, 7]. The presence of two hard scales

µ ∼ mb and µ ∼
√

Λ̄mb leads to two steps matching QCD→ SCETI → SCETII with

corresponding two independent coefficient functions which can be calculated systematically

in perturbative QCD. The non-perturbative dynamics is described by the matrix elements
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of the light-cone operators constructed from the fields of the SCETII effective theory. These

unknown functions are universal for all processes and therefore can be constrained from

the global analysis. Phenomenological applications to the nonleptonic decays based on the

factorization have been considered in several papers. The QCD factorization approach (the

so-called BBNS or physical scheme) was used in [9]. A different analysis on basis of SCET

was suggested in [7, 8]. Although both approaches are based on the same theoretical idea

they are different in the consideration of some phenomenological moments, see for instance

discussion in [10].

An important question which appears in application of the factorization is applicability

of perturbation theory at relatively moderate scale µ ∼
√

Λ̄mb ∼ 1−2 GeV . This situation

arises at the second step of the matching SCETI → SCETII . In order to answer this

question, the next-to-leading calculations of the so called jet coefficient functions have

been done in [12 – 14]. It was demonstrated [13] that the radiative corrections are large

but, on the other side, do not indicate any problem for the applicability of the perturbative

expansion. But the full next-to-leading contributions also include corrections to the hard

coefficient functions which describe matching QCD to SCETI effective theory. A priory,

such corrections could also be considered as a source of quite large contributions, especially

for the color suppressed amplitudes in the BBNS analysis [13]. Therefore the second tail

of the next-to-leading corrections, corresponding to the matching of QCD to SCETI at

µ ∼ mb also have to be computed. An other important motivation for such a calculation

is the observation that the imaginary part of hard spectator amplitude arises only from

the radiative corrections. If it can produce sizable corrections to the CP -asymmetries then

such contribution is very important for the phenomenological analysis.

Recently, such calculations have been carried out and results are presented in [15]

for the graphical tree amplitudes and for the penguin amplitudes [16]. In this paper we

present the calculations of the radiative corrections to the graphical tree amplitudes. Our

results have been computed using different technical approach and can be considered as an

independent derivation of the corresponding corrections.

Our paper has the following structure. In section I we introduce the basic notation

and review, for convenience, the formulation of the factorization theorem for B → ππ

decays. In section II we discuss the matching from QCD to SCETI . We define the

basic set of SCETI operators and recalculate the leading order coefficient functions. The

calculation of the one loop diagrams and results for the coefficient functions are given in

section III. Section IV is devoted to the numerical estimates of the branching fractions.

The discussion of some technical questions and the analytical results for the individual

diagrams are presented in the appendix.

2. QCD factorization for B → ππ decays

For the convenience we review shortly the basic QCD factorization approach suggested

in [9]. The amplitudes of two pion decays are given by matrix elements

Aππ =
〈
π(p′)π(p) |Heff | B̄(P )

〉
(2.1)
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with the effective Hamiltonian

Heff =
GF√

2
λ(d)

u

(
C1O

u
1 + C2O

u
2 +

10∑

i=3

CiOi + C7γO7γ + C8gO8g

)
+ h.c. (2.2)

+
GF√

2
λ(d)

c

(
C1O

c
1 + C2O

c
2 +

10∑

i=3

CiOi + C7γO7γ + C8gO8g

)
+ h.c. (2.3)

where λ
(d)
u = VubV

∗
ud, λ

(d)
c = VcbV

∗
cd , Ci and Op

i are coefficient functions and effective

four-fermion operators respectively. In particular, the explicit expressions for the current-

current operators are

Ou
1 = (u b)V −A(du)V −A, Ou

2 = (uβ bα)V −A(dαuβ)V −A (2.4)

Oc
1 = (c b)V −A(dc)V −A, Oc

2 = (cβ bα)V −A(dαcβ)V −A (2.5)

where as usual V − A = γµ(1 − γ5) and indices α, β stand for the color. The definitions

of the remaining terms are standard and can be found, for instance, in [17]. Taking into

account the structure of the effective Hamiltonian (2.3) the decay amplitudes Aππ can be

conveniently rewritten through the effective amplitudes αi in the following way [9]:1

Aπ+π− = −λ(d)
u

iGF√
2

M2
Bfπ

[
α1 + αu

4 + αu
4,EW

]
− λ(d)

c

iGF√
2

M2
Bfπ

[
αc

4 + αc
4,EW

]
, (2.6)

Aπ0π0 = λ(d)
u

iGF√
2

M2
Bfπ

[
−α2 + αu

4 − 3

2
αu

3,EW − 1

2
αu

4,EW

]

+λ(d)
c

iGF√
2

M2
Bfπ

[
αc

4 −
3

2
αu

3,EW − 1

2
αc

4,EW

]
, (2.7)

where we have neglected the annihilation contributions. The amplitudes αi describe the

matrix elements of the different operators in (2.3). Namely, α1,2 gives the matrix elements

of the current-current operators O1,2, αu,c
4 and αu,c

3,4,EW denote the QCD and Electro-

Weak penguin contributions respectively. From the isospin symmetry one has
√

2Aπ0π− = Aπ0π0 + Aπ+π− (2.8)

We used notation MB for B−meson mass, fπ is pion decay constant and below f0 ≡
f0(0) = f+(0) denotes B → π transition form factors at q2 = 0:

〈
π(p) |qγµb| B̄(P )

〉
= f+(q2)

[
Pµ + pµ − M2

B − m2
π

q2
qµ

]
+ f0(q

2)
M2

B − m2
π

q2
qµ . (2.9)

The amplitudes αp
i include all dynamical information about the decays. In the limit of large

b−quark mass mb → ∞ the QCD factorization approach makes it possible to calculate

amplitudes αp
i to the leading power accuracy. Let us consider the matrix elements α1,2

which provide dominant contribution to the branching fractions. Their expressions are

given by

αi = f0

∫ 1

0
du Vi(u)ϕπ(u) +

∫ 1

0
du ϕπ(u)

∫ 1

0
dz Ti(u, z) ξB1

π (z), (2.10)

1We have slightly changed the original notation removing f0 from the normalization factor
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ξB1
π (z) = fBfπ

∫ ∞

0
dω

∫ 1

0
dx φB(ω)J(z, x, ω) ϕπ(x) (2.11)

where functions Vi and Ti are the hard coefficient functions which can be computed in the

perturbation theory order by order in QCD coupling αS :2

Vi = V LO
i (u) +

αS

2π
V NLO

i (u, z,mb/µF ) + . . . (2.12)

Ti = TLO
i (u) +

αS

2π
TNLO

i (u, z,mb/µF ) + . . . (2.13)

The hard coefficient functions describe the hard subprocess in which quarks and gluons

are highly virtual, with typical hard momenta p2
h ∼ m2

b . Performing integration over such

fluctuations we reduce QCD to the effective theory SCETI which however still contains

large hard-collinear fluctuations of order p2
hc ∼ mbΛ̄. Integrating over these degrees of

freedom we reduce SCETI to the low energy effective theory SCETII which contains only

collinear and soft particles with small p2
c ∼ p2

s ∼ Λ̄2 off-shell momenta. The coefficient

function which appears at this step is the so-called jet-function J(z, x, ω):

J(z, x, ω) = αS(µhc) JLO(z, x, ω) + . . . (2.14)

where the hard-collinear scale µhc ∼
√

mbΛ̄. The soft physics is encoded by the matrix

elements of SCETII operators constructed from the soft and collinear fields. These matrix

elements are parametrised by non-perturbative light-cone distribution amplitudes (LCDA)

ϕπ, φB and decay constants fπ, fB. Their explicit definitions are given by

fπϕπ(x) = i

∫
dλ

π
e−i(2x−1)(p.n)λ

〈
π−(p)

∣∣d̄(λn) n/ γ5 u(−λn)
∣∣ 0

〉
, (2.15)

where n̄ and n are the light cone vectors: n2 = n̄2 = 0, (n · n̄) = 2 and pion decay constant

defined as 〈
π−(p)

∣∣d(0) n/γ5 u(0)
∣∣ 0

〉
= −ifπ(p.n) , (2.16)

that implies
∫

dx ϕπ(x) = 1. B−meson LCDA is given by

Fstat(µ)
√

MBφB(ω) = −i

∫
dλ

2π
e+iωλ

〈
0 |q̄(λn)n/γ5hv(0)| B̄(P )

〉
, (2.17)

where v = 1
2 (n̄ + n) is the velocity of B−meson at the rest frame. The MB-independent

decay constant Fstat(µ) [11] is defined as

Fstat(µ) =
√

MB fB/KF (µ), KF (µ) = 1 +
αSCF

4π

(
3 ln

mb

µ
− 2

)
(2.18)

where the physical decay constants fB is given by

〈
0 |qγµγ5b| B̄(P )

〉
= ifBMBvµ. (2.19)

2In this paper we always assume that perturbative expansion of any quantity R is defined as R =

RLO + αS

2π
RNLO + . . .
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As it was shown in [20, 21], the normalization integral for φB(ω) and higher moments

are not defined and therefore the non-local matrix element (2.17) can not be reduced to

the local matrix element (2.18). This feature makes this function quite different from the

standard LCDA ’s of light mesons.

As we can see from equation (2.10) the jet function appears in the second term only.

This term describes the hard spectator interaction. For the fist term in (2.10) the match-

ing to SCETII is not possible due to the overlap of the soft and collinear regions, see

discussions [18, 19]. Such contribution is known as soft-overlap form factor. In the BBNS

prescription this form factor is excluded using the so-called ”physical scheme”. In this

approach the soft-overlap form factor is rewritten as a sum of physical form factor f0 and

of hard spectator scattering contribution (the details are given below in the text).

Explicit expressions for the hard coefficient functions read [9] (i ± 1 ≡ i + (−1)i+1)

Vi(u) =

(
Ci +

Ci±1

Nc

)
+

αS

2π
V NLO

i (u) + O(α2
S), (2.20)

V NLO
i (u) =

C
i±1

Nc
V (u), (2.21)

V (u) =
1

2
CF

(
12 ln

mb

µh
− 18 + 3

(
1 − 2u

1 − u
ln u − iπ

)
+ (2.22)

[
2Li2[u] − ln2 u +

2 ln u

1 − u
− (3 + 2iπ) ln u − (u ↔ u)

])
.

Ti(u, z) = −Ci±1

Nc

1

1 − u
+

αS

2π
TNLO

i (u, z) + O(α2
S), (2.23)

For the jet function in our notation we have

J(z, x, ω) = αS

{[
−π

CF

Nc

δ(x − z)

x ωmb

]
+

αS

2π
JNLO(z, x, ω) + . . .

}
, (2.24)

The next-to-leading order expression for JNLO(z, x, ω) has been recently obtained in several

papers [12 – 14] and we shall not present it here.

3. Calculation of the hard coefficient functions

The aim of this section is to discuss some details relevant for our calculation. We shall

reproduce the leading order results for hard coefficient functions Ti quoted in eq. (2.23).

As it was discussed in the previous section, Ti is associated with matching QCD to the

effective theory SCETI . Technical details of such calculations have already been discussed

in [23 – 25] for the case of heavy-to-light currents.

First, let us fix the basis of SCETI operators relevant for our case. We introduce two

operators with approprite flavor q and chiral structure:

J (A0)(s) = (q̄nWc)s

(
1 − i

←−
∂/

i n̄
←−
∂

)
hv, (3.1)

J (B1)(s) =
1

mb
(q̄nWc)s(W

†
c iD/⊥cWc)(−s)(1 − γ5)hv. (3.2)
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where we have accepted the notation introduced in [26]. The light quarks are supposed to

be collinear fields in SCET approach n/qn(x) = 0, hv is HQET field. Notation Wc is used

for the hard-collinear Wilson line involving only n̄ · Ac component of the collinear gluon

field:

(q̄nWc)s = q̄n(s n̄)P exp

{
ig

∫ 0

−∞

du n̄Ac[(s + u) n̄]

}
. (3.3)

Matrix elements of these operators between physical particles define two SCETI form

factors:

〈
π+(p)

∣∣(d̄nWc) hv

∣∣ B̄(P )
〉

= mb ξπ, (3.4)
〈

π+(p)
∣∣∣J (B1)(s)

∣∣∣ B̄(P )
〉

= mb

∫ 1

0
dz eis(2z−1)mb ξB1

π (z), (3.5)

where dependence of the form factors on mass mb is implied.

In order to obtain the factorization formula (2.10) one has to perform matching of the

effective Hamiltonian (2.3) to the operators in SCETI (3.1) and (3.2) . We shall focus our

attention on the contributions of the current-current operators O1,2 because they provide

dominant part of the two body decay amplitude. Then for the matrix element Aππ (2.1)

we obtain

Ai
ππ =

GF√
2
λ(d)

u

〈
(ππ)i |C1O

u
1 + C2O

u
2 | B̄

〉
= − iGF√

2
M2

Bfπ( αi ), (3.6)

αi =
(

ξπ vi ∗ ϕπ + ϕπ ∗ ti ∗ ξB1
π

)
, (3.7)

where vi and ti denote hard coefficient functions and by asterisk ∗ we denote, for simplicity,

convolution integrals. The index i is introduced to distinguish two possible final states

(ππ)i=1 = π+π−, (ππ)i=2 = π0π0. Corresponding matrix elements define amplitudes α1

and α2 respectively.

In the physical scheme one has to express SCETI form factor ξπ through the physical

form factor f+(0) = f0 [13]:

ξπ =
1

CA0
f0 −

1

CA0
CB1 ∗ ξB1

π , (3.8)

where CA0 and CB1
+ are the hard coefficient functions which appear in matching of the

scalar heavy-light QCD current to the operators (3.1), (3.2):

q b = CA0 ∗ JA0 + CB1 ∗ JB1 + O(1/mb) (3.9)

Inserting equation (3.8) into (3.6) we obtain

αi = f0 vi/C
A0 ∗ ϕπ + ϕπ ∗

(
ti − vi CB1/CA0

)
∗ ξB1

π , (3.10)

Comparing this expression with equation (2.10) we find

Vi(u) = vi(u)/CA0, (3.11)

Ti(u, z) = ti(u, z) − vi (u) CB1(z)/CA0 . (3.12)
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These expressions define precisely the coefficient functions Vi and Ti in the physical scheme

through the matching coefficient vi and ti of the effective operators O1,2. Introducing

perturbative expansions for the coefficient functions:

CA0 = 1 +
αS

2π
CA0

NLO + . . . , (3.13)

CB1
+ = CB1

LO +
αS

2π
CB1

NLO + . . . , (3.14)

vi(u) = vLO
i (u) +

αS

2π
vNLO
i (u) + . . . , (3.15)

ti(u, z) = tLO
i (u, z) +

αS

2π
tNLO
i (u, z) + . . . . (3.16)

we obtained for the functions Vi and Ti in (2.12) and (2.13)

V LO
i = vLO

i , (3.17)

V NLO
i = vNLO

i − vLO
i CA0

NLO , (3.18)

TLO
i =

(
tLO
i − vLO

i CB1
LO

)
, (3.19)

TNLO
i = (tNLO

i − vLO
i CB1

NLO) − CB1
LO V NLO

i . (3.20)

One can observe that subtraction terms −vLO
i CA0

NLO in equation (3.18), −vLO
i CB1

LO and

−vLO
i CB1

NLO in (3.19) and (3.20) can cancel the contributions of the ”factorizable” diagrams

which can be considered as appropriate product of the two matrix elements:

〈
(ππ)i

∣∣Ou
1,2

∣∣ B̄
〉
fact

∼ 〈π |qΓq| 0〉
〈
π |qΓb| B̄

〉
(3.21)

If it is fulfilled, then such diagrams can be ignored in the calculations of the coefficient

functions TLO
i and TNLO

i .

In our paper we shall obtain the coefficient functions Ti computing matrix elements

with quarks and gluons. For that purpose we define the perturbative analogs of the dis-

cussed form factor ξB1
π and LCDA ϕπ. To define SCETI form factor let us consider as

external state a hard-collinear quark and a gluon with momenta p1 and p2 respectively:

p1 = z p + (p1n)
n̄

2
+ p1⊥, (3.22)

p2 = z̄ p + (p2n)
n̄

2
+ p2⊥, (3.23)

where p = mb
n
2 , z̄ = 1 − z and the other components are (n · p1,2) ∼ Λ̄, |p1,2⊥| ∼

√
Λ̄mb

as it necessary for the hard-collinear momenta. Then we define

〈
q(p1)g(p2)

∣∣∣J (B1)(s)
∣∣∣ hv

〉
= mb

∫ 1

0
dz eis(2z−1)(p.n̄)ξB θ(z). (3.24)

The factor ξB denotes the relevant combination of the quark spinors and gluon polarization

vector: ξB = g
m2

b

q̄e/g(1 − γ5)hv .
3 We assume that the final gluon is transversely polarized

3Symbols q̄ and hv denote the quark spinors in this formula.
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Figure 1: Graphical representation of the QCD matrix elements which we use to compute Ti.

The right graph corresponds to the QCD diagrams with emission of collinear gluon by collinear

outgoing quark. Such graphs include contribution from operator J (A0) with quark-gluon vertex

from the leading order SCET lagrangian.

with the polarization vector eg, the color indices are not shown for simplicity. Performing

simple tree level calculation one finds

θLO(τ) = δ(z − τ). (3.25)

In order to define the perturbative analog of the pion LCDA we consider quark-antiquark

state with collinear momenta

p′1 = up′ + p′1⊥, p′2 = ūp′ + p′2⊥, p′ = mb
n̄

2
. (3.26)

Then4

〈
p′1p

′
2 |ū(λn) n/ γ5 d(−λn)| 0

〉
= −i fP (p′n)

∫ 1

0
dxeiλ(2x−1)(p′n)ϕP (x), (3.27)

where we introduced notation fP = i un/γ5u/mb. Again, from the leading order calculation

one obtains

ϕLO
P (u) = δ(u − x). (3.28)

In order to calculate coefficient functions Ti we introduce the matrix elements describ-

ing the decay of the b-quark into three quarks and gluon

〈
p′1 p′2, p1 p2 |C1O1 + C2O2| bv

〉
nf
−

〈
p′1, p

′
2 p1p2

∣∣∣T
{

t1 ∗ J (A0),Lint
hc

}∣∣∣ bv

〉
nf
= im2

b fP ξBκ
T
i

(3.29)

and parameterized by form factors κ
T
i respectively.

By the subscript ”nf” we indicate that we exclude the factorizable diagrams (3.21)

which, as expected, cancel in the transition to the physical scheme. The subtraction term in

the left side of eq. (3.29) represents the admixture of the operator J (A0) with one insertion

of the interaction vertex Lint
hc from the LO hard-collinear SCET lagrangian [24, 25]. Such

contribution describes the emission of collinear gluon from collinear quark and are present

only in the diagrams with topology, given in figure 1. Practically this subtraction can be

easily done by the substitution

ū(p1)e/g
ip/

p2
−→ ūne/g

n̄/

2

i

(pn̄)
(3.30)

4For simplicity, we do not introduce here the collinear SCET fields following standard QCD notation.
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a b

Figure 2: Leading order diagrams for the coefficient functions Ti .

where ū(p1) is the wave function of collinear quark in full QCD and ūn denotes the hard-

collinear spinor in SCET.

From the factorization we expect that

κ
T
i =

∫ 1

0
du ϕP (u)

∫ 1

0
dz t̃i(u, z) θ(z), (3.31)

where by tilde we denote coefficient functions of nonfactorizable diagrams.

Consider, as example, calculation of TLO
i . Relevant tree diagrams at the leading order

are shown in figure 2. Two diagrams with emission of a gluon from the bottom lines

represent the factorisable contributions (3.21) which cancel against −vLO
i CB1

LO in (3.19).

Straightforward calculation gives (after Fierz transformation)

Da = 0, (3.32)

Db = i m2
b fP ξB

(
−Ci±1

Nc

1

u

)
. (3.33)

Comparing with eq. (3.31) we obtain:

∫ 1

0
du ϕLO

P (u)

∫ 1

0
dz TLO

2 (u, z) θLO(z) =
(
i m2

b fP ξB

)−1
Db (3.34)

Inserting the leading order expressions for the form factor θLO and LCDA ϕLO
P we find

the leading order hard coefficient functions:

TLO
i (u, z) = −Ci±1

Nc

1

1 − u
(3.35)

As one can observe, LO results have no z− dependence. In the next section we use the

same technique to compute the next-to-leading order corrections.

4. Calculation of the coefficient functions Ti in the next-to-leading order

Corresponding one-loop diagrams are shown in figure 3. Factorisable diagrams, in the

sense of (3.21), are not shown for simplicity. These are the diagrams where the external

gluon is emitted from one of the bottom quark lines and the virtual gluon connects only the

bottom (upper) quark lines but not upper and bottom. For the case of form factor α1, these

diagrams naturally reproduce subtraction term vLO
1 CB1

NLO in (4.28) and therefore cancel.
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l

B 1-7

1

4

35

6

2 7

l

A 1-7

1

2

3

4

5 6

7

l

C1-7

1

2

3

4

6

7

5

D1-7

l

1

2

3

4

5 6

7

l

E1-6

1 2

3
5 6

F5,6

l

G 1-5

1

3
5

l

H1-6

1

3
6

Σh

1
2

5 6

Figure 3: One loop diagrams which have to be computed in QCD. The crossed line denotes the

emission of the outgoing gluon and the number gives the index of the corresponding diagram. The

momentum flow is shown only for one line with the loop momentum l . We skip for simplicity the

diagrams with the light quark wave function renormalization.

But analogous situation for the α2 is more involved because of the different Dirac structure

of the operator vertex. The problem is that corresponding UV − divergent diagrams in

dimensional regularization can not be represented exactly in the factorised form (3.21)

because Fierz identities can not be used to regularized diagrams. Therefore one has to

check the exact cancellation against vLO
2 CB1

NLO after UV −renormalization. We have fond

that in accordance with subtraction scheme, described below in the text, such cancellation

is exact. Therefore we shall not discuss these diagrams further.

From the factorization we expect that form factors κ
T
i describing the matrix ele-

ments (3.29) of the renormalized QCD operators can be represented as a sum of three

contributions:

(
κ

T
i

)
NLO

= ϕLO
P (x′) ∗ t̃NLO

i (x′, z′) ∗ θLO(z′)

+ ϕNLO
P (x′) ∗ t̃LO

i (x′, z′) ∗ θLO(z′) + ϕLO
P (x′) ∗ t̃LO

i (x′, z′) ∗ θNLO(z′) (4.1)

where ϕNLO
P and θNLO denote the contributions of the renormalized matrix elements (3.24)

and (3.27) in the next-to-leading order. The three contributions in (4.1) can be associated

with four integration regions in the loop integrals. The hard region ki ∼ mb, k2 ∼ m2
b

provides contributions to the t̃NLO
i (x′, z′), the collinear to p′ must be associated with

contributions to ϕNLO
P (x′), the soft ki ∼ Λ̄, k2 ∼ Λ̄2 and collinear to p regions can

be associated with the θNLO(z′). Substituting in (4.1) the explicit expressions for the

ϕLO
P , θLO(z′) and t̃LO

i (x′, z′) we obtain

t̃NLO
i (u, z) =

(
κ

T
i

)
NLO

+
Ci±1

Nc

∫ 1

0
dx′ϕ

NLO
P (x′)

1 − x′
+

Ci±1

Nc

1

ū

∫ 1

0
dz′θNLO(z′) . (4.2)

Inserting this expression into eq. (3.20) and substituting CB1
LO = −1 [22, 26] we find for the
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NLO coefficient functions in physical scheme:

TNLO
i (u, z) =

(
κ

T
i

)
NLO

+
Ci±1

Nc

∫ 1

0
dx′ϕ

NLO
P (x′)

1 − x′
+

Ci±1

Nc

1

ū

∫ 1

0
dz′θNLO(z′) +V NLO

i . (4.3)

Let us now discuss the calculation of different terms appearing in (4.3). To perform

the calculations of the diagrams in figure 3 one has to introduce regularization for the

ultraviolet (UV ) and infrared (IR) divergencies. We shall use dimensional regularization

with D = 4−2ε to subtract UV −divergencies. To compute the UV −divergent subdiagrams

of the four-fermion operators we use NDR−scheme with the anticommuting γ5 matrix.

Note that Fierz identities then can be used only for the renormalized matrix elements

in four dimensions. For the IR−divergencies we use regularization by off-shell external

momenta. Such regularization makes possible to perform all manipulation with Dirac

algebra for the UV −finite integrals in four dimensions.

As an illustration, let us consider a contribution of some diagram DX which can be

represented in the following way

DX =

∫
dDl ūΓ1bv d̄Γ2u, (4.4)

where u, ū, bv, d̄ are quark spinors of given flavor and matrices Γ1⊗Γ2 denote some momen-

tum dependent expressions. Contraction of spinor indices can be organized in two different

ways which correspond to the amplitudes α1 or α2. As an example below we consider the

calculation of α2. The same technique also was used for α1.

All graphs can be divided into two groups: UV −divergent and UV −finite.

UV −divergent subgraphs, which appear in graphs G{1, 3, 5},H{1, 3, 6} represent usual

divergencies of the QCD Green functions. They are removed by QCD Lagrangian coun-

terterms. UV −subgraphs in diagrams A{4, 5, 6}, B{4, 5, 6}, C{4, 5, 6}, D{4, 5, 6} and

F{5, 6} describe renormalization of the four-fermion operators O1,2. Calculation of the

corresponding UV −divergent integrals must to be performed in D = 4 − 2ε. A typical

expression for the integrand of UV −divergent graph can be written as

ūΓ1bv d̄Γ2u = Nµν
2

lµlν
D[l]

+ Nµ
1

lµ
D[l]

+ N0
1

D[l]
(4.5)

where the l-independent functions Nµ...
i contain Dirac structures and spinors from the

numerator, D[l] denotes the denominator, which behaves at large Euclidian momentum l

as D[l] ∼ (l2)3. Such situation is usual for the UV −divergent graphs mentioned above,

except only diagrams with quark self-energy subgraphs. Substituting (4.5) in (4.4) we

obtain

DX = Nµν
2 J [lµlν ] + Nµ

1 J [µ] + N0J0, (4.6)

where we introduced

J [lµlν ] =

∫
dDl

lµlν
D[l]

(4.7)

and similar for others integrals. Taking into account the behavior of the denominator at

large momentum D[l] ∼ (l2)3 , it’s clear that only J [lµlν ] is UV −divergent. The other three
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integrals can have only IR-divergencies, regulated by the off-shell momenta and therefore

can be considered in D = 4. One can easily express the tensor integral J [lµlν ] through

scalar integrals:

J [lµlν ] = gµνJ1 + (nµn̄ν + n̄µnν)J2 (4.8)

with

J1 =
1

2(1 − ε)

(
J [l2] − J [(l · n)(l · n̄)]

)
, (4.9)

J2 =
1

4(1 − ε)

(
(2 − ε)J [(l · n)(l · n̄)] − J [l2]

)
. (4.10)

Both scalar integrals J [l2] and J [(l · n)(l · n̄)] have UV −poles. But in the coefficient J2

the poles cancel. Hence we must contract gµν with Dirac structure Nµν
2 in D = 4 − 2ε

and expand the obtained expression up to terms ∼ ε. The reduction of all one-loop Dirac

structures to tree spinor combinations can be performed with the help of NDR prescription

γµγµ1γµ2(1 − γ5) ⊗ γµγµ1
γµ2

(1 − γ5) = 4(4 − ε)γµ(1 − γ5) ⊗ γµ(1 − γ5) (4.11)

Let us here make following observation. Computing the integrals J [l2] and J [(l · n)(l · n̄)]

we do not remove the IR−regularization because these integrals can also happen to be

IR−divergent and we must avoid the mixing of UV − and IR−poles. However, we observed,

that one can always choose some“convenient” momentum flow for which these integrals

have only UV −divergences and free from IR−singularities. In this case one can drop the

IR-regularization making the calculations more simple.

Defining UV −pole of the coefficient J1 as

pole part [J1] =
1

ε
ZUV (4.12)

we write UV −divergent contribution for the DX as

DUV
X =

1

ε
ZUV lim

ε→0
Nµν

2 gµν = im2
bfP ξB

αS

2π
XcolJXUV (4.13)

where Xcol is the color factor of the diagram and JXUV represents some UV −divergent

expression. In appendix we provide explicit expressions for Xcol and JXUV for each dia-

gram.

The singular contributions DUV
X are removed by tree diagrams with operators renor-

malization constants and by QCD counterterms, see details in the appendix. After that,

performing Fierz transformation, we obtaine trivial contributions from all the diagrams

with topology A5 − G5 and G{1, 3}.
The similar calculation of the self-energy one-loop diagrams is much simple because

they have only UV −poles and can be easily reduced to the tree Dirac structures. Let us

mention, that we must consider also the diagrams with the one loop corrections to the wave

functions which are not listed in the figure 3, except for the heavy quark Σb. We discuss

these contributions in the appendix.
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Finally, the finite expression for the diagram under consideration can be written as

[DX ]R = [Nµν
2 gµνJ1]R + Nµν

2 (nµn̄ν + n̄µnν)J2 + Nµ
1 J [lµ] + N0J0, (4.14)

where [. . .]R denotes renormalized quantity. Remaining integrals have only

IR−divergencies: collinear and soft. Calculation of such contributions is the same for

all diagrams, with and without UV −subgraphs. Because we use off-shell regularization,

we put D = 4 and perform projections on the pseudoscalar state with momentum p′:

ua
β ūb

α = (−i) fP
δab

Nc

[
p/′γ5

]
αβ

, (4.15)

and on the SCETI operator JB1:

d̄a
αbc

vβ = d̄n tAγσ
⊥hv [V σ

B1]βα ⊗ tAca + . . . , (4.16)

[V σ
B1]βα =

1

2

[
n/ γσ

⊥ − 1

2
n̄/γσ

⊥n/

]

βα

(4.17)

where tA are the standard color matrices satisfying Tr(tAtB) = 1
2δAB and dots stand for

the irrelevant spin and color structures. It is convenient also to insert parametrisation for

the vector integral

J [lµ] =
1

2
nµJ [(l · n̄)] +

1

2
n̄µJ [(l · n)]. (4.18)

After calculation of traces and contractions we arrive to the expression for [DX ]R which

can be written as a sum scalar integrals

[DX ]R = im2
b fP ξB

αS

2π
[JX ]R , (4.19)

[JX ]R =
[
a21(ε)J [l2] + a22(ε)J [(l · n)(l · n̄)]

]
R

+ b11J [(l · n̄)] + b12J [(l · n)] + c0J0 .

(4.20)

with some coefficients a2i, b1i and c0. The coefficients a2i, in front of UV −divergent inte-

grals are computed in dimension D and therefore depend on ε.

The sum of the integrals [JX ]R gives the formula for the form factor κ
T
i :

(
κ

T
i

)
NLO

=
∑

X

[JX ]R . (4.21)

Let us stress again, that expression with brackets [. . .]R in (4.20) denotes the renormalized

quantity. We simply have rewritten the coefficients J1,2 in terms of the corresponding inte-

grals (4.10), (4.9) and introduced ε-dependent factors a2i which arise from the calculations

in DR. Assume for simplicity that UV −divergent integrals are free from IR−singularities.

As we have discussed above, such situation can be realized for each diagram. Then con-

tributions associated with these integrals are simply some finite expressions which do not

depend on IR−regularization parameters. Our task now is to compute the remaining

integrals J [(l · n)], J [(l · n̄)] and J0.
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Evaluation of these four-dimensional integrals can be performed with the technique

known as expansion by regions, see for instance [27]. The dominant regions have been

discussed above in the text. Hence, instead of one finite integral we obtain the sum of

more simple but divergent integrals. According to general prescription, we use dimensional

regularization in order to regularize the simplified integrals in each region. Therefore, in

accordance with the dominant regions we have find following general decomposition of

[JX ]R
[JX ]R = (JX)hard + (JX)coll−p + (JX)coll−p′ + (JX)soft . (4.22)

Taking into account that IR−divergencies are related with collinear and soft regions we

find:

(JX)hard =
[
a21(ε)J [l2] + a22(ε)J [(l · n)(l · n̄)]

]
R

+

(b11J [(l · n̄)] + b12J [(l · n)] + c0J0)hard , (4.23)

(JX)coll, soft = (b11J [(l · n̄)] + b12J [(l · n)] + c0J0)coll, soft . (4.24)

The hard region contributions in DR have IR−poles instead of IR−logarithms as in

the case of off-shell regularization. The collinear and soft contributions have only

UV −divergencies (off-shell regularization works in IR−regions). But the sum of all terms

must be finite because of cancellation between UV − and IR−poles.

The contributions from the collinear and soft regions depend on the external off-shell

momenta which we use as IR−regulators in the original integral JX . Inserting decompo-

sition (4.22) into (4.21) and then into (4.3) we must recover the cancellation of the soft

IR−scales. This is a good check of the factorization in the next-to-leading order. It is

convenient to define the quantity:

S =
∑

X

{
(JX)coll−p + (JX)coll−p′ + (JX)soft

}

+
Ci±1

Nc

(∫ 1

0
dx′ϕ

NLO
P (x′)

1 − x′
+

1

ū

∫ 1

0
dz′θNLO(z′)

)
. (4.25)

Then taking into account that ϕNLO
P and θNLO are defined as matrix elements of the

renormalized operators ( the UV −poles are subtracted )5 we expect that the answer for S

can be represented as a sum of UV −poles and scale independent constant:

S =
1

ε2
Z2 +

1

ε
Z1 + Z0. (4.26)

The poles, arising from the collinear and soft integrals in (4.26), must cancel against

IR−poles appearing in the hard integrals (JX)hard in (4.22). It is clear that the residues

Z1,2 can be related to the corresponding renormalization constant of the LCDA ϕP and

form factor θ.

In order to obtain the finite terms Z0 one has to perform calculation of the collinear

and soft integrals, matrix elements (3.24) and (3.27) and compute the sum. It is clear

5Note that one must apply the same IR−regularization for the matrix elements which define ϕNLO

P and

θNLO .
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that both calculations overlap and this may be used to simplify derivation of the term Z0.

The SCETI non-renormilized matrix elements must be computed in DR, as usually, with

D-dimensional Dirac algebra. But the structure of numerators of the diagrams for the

matrix elements are relatively simple and their reduction to the basic combinations can

be evaluated without any special prescriptions. The calculation of the form factor (3.24)

is more complicate in comparison with pure collinear pion LCDA (3.27) because certain

diagrams generate UV −poles of second order. But corresponding diagrams always have

very simple numerators. Performing reduction of Dirac algebra to the basic structures

one can again rewrite expressions for the matrix elements in terms of the scalar integrals

which are similar to those appearing from the collinear and soft regions in QCD diagrams.

Now the coefficients in front of these integrals are ε-dependent. We have found following

representation for the bare NLO SCETI matrix elements:

Ci±1

Nc

(∫ 1

0
dx′ϕ

NLO
P (x′)

1 − x′
+

1

ū

∫ 1

0
dz′θNLO(z′)

)

bare

=

−
∑

X

{
(JX)coll−p + (JX)coll−p′ + (JX)soft

}
+ ε

∑

X

IX (4.27)

where IX are some UV −divergent integrals. These integrals have only first order poles in ε.

All integrals with second order poles are absorbed into the first sum in rhs (4.27). Therefore

taking into account that integrals IX have coefficient ε we obtain finite contribution from

the second term in rhs (4.27). The factor ε in the numerators appears, as a rule, from

the reduction of D-dimensional structures in the diagrams to the basic factors ξB and fP .

Combining (4.27) with (4.25) and taking into account UV −counteterterms for the SCETI

operators we obtain representation (4.26). It is clear that terms ε IX provide contributions

to the constant Z0 in (4.25).

Substitution (2.21) and (4.26) in formula for the coefficient function (4.3) gives:

TNLO
i (u, z) =

∑

X

(JX)hard +
1

ε2
Z2 +

1

ε
Z1 + Z0 +

C
i±1

Nc
V (u). (4.28)

This is our final working formula. It is convenient to rewrite the pole contributions as

Z1 = (Z1)s/coll−p + (Z1)coll−p′ (4.29)

where (Z1)s/coll−p and (Z1)coll−p′ is associated with the form factor θNLO (soft and

collinear –p regions) and LCDA ϕNLO
P (collinear–p′ region) respectively. Calculation of

the relevant integrals (details are considered in the appendix) gives

(Z1)coll−p′ = CF

(
−C

i±1

Nc

)
1

ū
(2 + ln ū) , (4.30)

1

ε2
Z2 +

1

ε
(Z1)s/coll−p =

(
−C

i±1

Nc

1

ū

)(
− 1

ε2

CF

2
(1 + 2ε ln [µ/(pn̄)]) (4.31)

+
1

ε

[
CF

ln z

z̄
− CA

2

z̄ + ln z

1 − z

])
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We checked that above expressions are consistent with the evolution kernels of the pion

LCDA [28, 29] and SCETI operator JB1 [13, 24]. But note, that we haven’t included

the diagrams with the wave function renormalizations hence the poles (4.30) and (4.31)

are not exactly convolutions of the corresponding evolution kernels with the leading order

coefficient functions.

Calculation of the hard integrals (JX)hard can be done with standard technique and

the results for each diagram are listed in the appendix. The arising IR−poles cancel in

the sum with (4.30) and (4.31) as it is expected from the factorization theorem. Resulting

expressions for the coefficient functions can be written as

α2 : TNLO
2 (u, z) =

C2

2Nc
TD(u, z) +

C1

Nc
TND(u, z), (4.32)

α1 : TNLO
1 (u, z) =

C1

2Nc
TD(u, z) +

C2

Nc
TND(u, z), (4.33)

where the subscripts D and ND can be understood as diagonal and non-diagonal contri-

butions. Assuming for simplicity µR = µF = µ we obtaine:

1

π
ImTD(u, z) =

1

2

(
4 − u

ū
− 2u2

(1 − u − z)2
− u

1 − u − z

)

+

(
1

ū
− z̄ u2

(1 − u − z)3

)
ln u

+
z

u − z
ln ū + u

(
−1

ū
− 1

u − z
+

u z̄

(1 − u − z)3

)
ln z̄ , (4.34)

Re TD(u, z) =
3

ū
ln

(
µ2/m2

b

)
+

8

ū
+

1

2

(
−u2+3ū

ū2
+

2u2

(1−u−z)2
+

u

1−u−z
− u

ū2 z̄

)
ln u

+

(
1

2 ū2 z̄
− u

ū (1 − u − z)2
− u

2 ū2 (1 − u − z)

)
(1 − ū z) ln(1 − ū z)

+
(1 − u z)

u ū z z̄
ln(1 − u z) −

(
3

2 ū
+

1

u z̄

)
ln ū − (2 − 3 z)

2 ū z̄
ln z

− z̄ (z̄ − 3u)

2 (1 − u − z)2
ln z̄ − ln2ū

2 ū
+

ln2u

2 ū
+

ln z

ū
(ln ū − ln u)

+
Li2(ū) − Li2(u)

ū
− z̄ u2

(1 − u − z)2
I(u, z) +

u z̄

ū
I(ū, z) , (4.35)

1

π
Im TND(u, z) =

CA

2

(
u

1 − u − z
− 1 + 2u

2 ū
− z

u − z
ln ū +

(
u2

(1 − u − z)2
− 1

)
lnu

+
z

ū z̄
ln z +

(
1

ū
− u2

(1 − u − z)2
+

u

u − z

)
ln z̄

)

+CF

(
1

2

(
5 − u

ū
− 2u2

(1 − u − z)2
− u

1 − u − z

)

+

(
1

ū
− u2 z̄

(1 − u − z)3

)
ln u +

u z̄

ū (u − z)
ln ū − z

ū z̄
ln z

+

(
u2 z̄

(1 − u − z)3
− u

ū
− u

u − z

)
ln z̄

)
(4.36)
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Re TND(u, z) = CF TCF (u, z)+
CA

2
TCA(u, z), (4.37)

TCF (u, z) =
1

4ū
ln2

(
µ2/m2

b

)
+

1

ū

(
21

4
+ ln ū − ln z

z̄

)
ln

(
µ2/m2

b

)

+
27

2 ū
+

π2
(
4 − 3u − 5u z − 4u2 z̄

)

24u ū z̄
−

(
1

2 ū
+

2

u z̄

)
ln ū

+

(
−2 + u

ū
+

u2

(1 − u − z)2
+

u

2 (1 − u − z)
+

1

ū z̄

)
ln u

−3 (3 − 2 z − u z̄)

2 ū z̄
ln z +

2 (1 − u z)

u ū z z̄
ln(1 − u z)

+
1

2

(
−1 − 3

ū
+

2u2

(1 − u − z)2
+

u

1 − u − z
− 1

u z2
+

3 − 5u

u ū z

)
ln z̄

+

(
1

2u ū z2
− 1 − (2 − u) u2

ū (1 − u − z)2
− u

(
u2 + 2 ū

)

2 ū2 (1 − u − z)

+
6u − 3 − 4u2

2u ū2 z
− 1

ū z̄

)
ln(1 − ū z)

+
ln ū

ū

(
− (1 + ū) ln u +

1 + ū z̄

z̄
ln z − ln z̄

)

− ln2ū

ū
+

ln2u

2 ū
+

(2 − z)

2 ū z̄
ln2 z − (1 + ū)

ū
ln u ln z

+
z − 2 ū z̄

ū z̄
Li2(u) − 1

u ū z̄
Li2(ū) − 1 − u (3 − z)

u ū z̄
Li2(z)

−(1 + u z̄)

ū z̄
Li2(u z) +

(
1

u ū z̄
− 1

)
Li2(ū z) +

1

ū
Li2(z̄)

− u2 z̄

(1 − u − z)2
I(u, z) +

u z̄

ū
I(ū, z) , (4.38)

TCA(u, z) = −1

ū

(
3 − ln z

z̄

)
ln

(
µ2/m2

b

)
− 9

ū
− π2 (1 − u (3 − z))

6u ū z̄
(4.39)

+
ln ū

u z̄
+

3 (2 − z)

2 ū z̄
ln z −

(
1 − 5

2 ū
+

u

1 − u − z
+

1

ū z̄

)
ln u

−1 − u z

u ū z z̄
ln(1 − u z) +

(1 − ū z) (z̄ − u (1 − z z̄))

u ū (1 − u − z) z z̄
ln(1 − ū z)

−
(

1 − 3

2u
+

u

1 − u − z
+

1 − 2u

u ū z

)
ln z̄ − 1

2 ū

(
1 +

1

z̄

)
ln2z

+
ln2ū

2
− ln2u

2
+

1

2 ū
ln2z̄ − ln ū

(
1

ū z̄
ln z + ln z̄

)

+
ln u

ū
(ln z − u ln z̄) +

(
1 − 1 + u z̄

ū z̄

)
Li2(u) −

(
2 − 1

u ū z̄

)
Li2(ū)

+
1

ū
Li2(z) +

(1 − 3u + u z)

u ū z̄
Li2(z) +

(1 + u z̄)

ū z̄
Li2(u z)

+

(
1 − 1

u ū z̄

)
Li2(ū z) − 1

ū
Li2(z̄) +

u2

1 − u − z
I(u, z) − u I(ū, z) .
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where we introduced convenient real function I(u, z) which reads

I(u, z) =
ln(u/z)

u − z

[
1

2
ln(uz) − ln(z̄ ū) − ln(u + z)

]
+

ln(ū/z̄)

u − z
ln

[
u + z

uz
− 1

]

+
1

u − z

[
2Li2(z̄) + Li2

(
z

u + z

)
+ Li2

(
z2

z + uz̄

)
− (z ↔ u)

]
. (4.40)

Our results are in agreement with the kernels which have been earlier presented in the

paper [15] but computed using different technical approach ( dimensional regularization

with evanescent operators).6 Let us also observe that the function I(u, z) introduced in

eq. (4.40) naturally appears in calculations of the diagrams involving massive propagator

of heavy quark. The similar structure have been also introduced in [15] and denoted as

F (z, u). Let us stress once more, that I(u, z) is a real function as one can easily see from

its definition (4.40). We have found that

I(u, z) =
1

z − u
Re[F (1 − z, 1 − u)]. (4.41)

We did not find any transformation to prove this equivalence analytically and checked it

numerically for the several arbitrary values of the arguments.

Analytical expressions (4.34)–(4.40) for the coefficient functions TNLO
1,2 represent the

main technical results of our paper.

5. Numerical estimates of B → ππ branching fractions

In this section we perform the numerical analysis of the branching fractions including next-

to-leading corrections to the hard and jet coefficient functions. The main contribution to

the branchings originate, obviously, from the real parts of amplitudes α1,2. We neglect in

our estimates by electroweak penguins αi,EW but include QCD penguins αu,c
4 , see eq. (2.1),

in the form presented in [9].

Consider first some important details in calculation α1,2 at the NLO approximation.

General formula reads:

αi =f0

∫ 1

0
du Vi(u, µR, µh)ϕπ(u, µh)+

∫ 1

0
du ϕπ(u, µh)

∫ 1

0
dz Ti(u, z, µR, µh) ξB

π (z, µh) , (5.1)

ξB
π (z, µh) =f̂Bfπ

∫ ∞

0
dω

∫ 1

0
dx φB(ω, µF )J(z, x, ω, µh, µF ) ϕπ(x, µF ). (5.2)

where we have shown explicitly the scale dependence. To estimate the values of these

amplitudes we use the following numerical input. For the coefficient functions Ci=1,2(µR)

in the effective Hamiltonian (2.3) we employ the NLO results at µR = mb obtained in [17]

(NDR-scheme, NLO approximation):

CNLO
1 (mb) = 1.075, CNLO

2 (mb) = −0.170. (5.3)

6We are grateful to S. Jäger and M. Beneke for the correspondence which helped us to fix a mistake in

the expression for one diagram
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where mb denotes b-meson pole mass mb = 4.8 GeV. For two others scales we accept the

following values:

µh = mb, µF = µhc = 1.5 GeV. (5.4)

For simplicity, the uncertainties in the scales setting will be ignored in our analysis. Then

we obtained

αi = f0

∫ 1

0
du Vi(u,mb)ϕπ(u,mb) +

∫ 1

0
du ϕπ(u,mb)

∫ 1

0
dz Ti(u, z,mb) ξB

π (z,mb) , (5.5)

To compute the form factor ξB1
π (z,mb) we must perform evolution from scale mb to the

scale µhc:

ξB
π (z,mb) =

∫ 1

0
dz′UB(z, z′,mb, µhc) ξB

π (z′, µhc), (5.6)

where the evolution operator UB is derived from the solution of the evolution equation [13,

24]:

d

d ln µ
ξB
π (z, µ) = −

∫ 1

0
dz [V (z, z′) − δ(z − z′)Γcusp(αS) ln

µ

mb
]ξB

π (z′, µ), (5.7)

The explicit expression for the evolution kernels in our notation are the same as in [24],

see Eq’s (46,47). Let us write the solution for UB in the form

UB = ULL
B (z, z′) + UNLL

B (z, z′) + . . . , (5.8)

where ULL
B and UNLL

B can be understood as ”leading log” and ”next-to-leading log” ap-

proximations. Both terms are needed to perform complete calculation at next-to-leading

order. The evolution of the form factor is combination of the two effects: summation of

the so-called Sudakov double logarithms associated with cusp-anomalous dimension Γcusp

and usual light-cone logarithms associated with non-local evolution kernel V (z, z′) (or non-

local anomalous dimension). At present Γcusp(αS) and V (z, z′) are known at two- and

one-loop accuracy respectively. This is enough for summation of leading logarithms in ULL
B

but in order to compute UNLL
B one has to know Γcusp at three loop and V (z, z′) at two

loop accuracy . Because these quantities are uncalculated, we can’t perform corresponding

evolution. So we just neglect by this effect in our calculation.

Form factor ξB
π (z, µhc) can be computed systematically order by order using factor-

ization approach . Corresponding jet function has been computed at the next-to-leading

accuracy in [12 – 14]. Fixing the factorization scale at this step to be equal to µF = µhc

we escape the summation of the large logarithms in jet function and therefore we have

to provide the LCDA’s ϕπ(x, µhc) and φB(ω, µhc) at this normalization point. Assuming

– 19 –



J
H
E
P
0
5
(
2
0
0
7
)
0
1
9

decomposition ξB
π = (ξB

π )LO + αS

2π (ξB
π )NLO we obtain:

αHSA
i =

∫ 1

0
du ϕπ(u,mb)

∫ 1

0
dz Ti(u, z)UB(z, z′) ∗

[
(ξB

π )LO(z′) +
αS

2π
(ξB

π )NLO(z′)
]

(5.9)

=

∫ 1

0
du ϕπ(u) TLO

i (u)

∫ 1

0
dz ULL

B (z, z′) ∗ (ξB
π )LO(z′)+

∫ 1

0
du ϕπ(u) TLO

i (u)

∫ 1

0
dz ULL

B (z, z′) ∗
[αS

2π
(ξB

π )NLO(z′)
]
+

∫ 1

0
du ϕπ(u)

∫ 1

0
dz

[ αS

2π
TNLO

i (u, z)
]
ULL

B (z, z′) ∗ (ξB
π )LO(z′) + . . .

where dots denote the neglected logarithms associated with UNLL
B and higher order terms

O(α2
S). For simplicity by asterisk we denoted the integration with respect to z′ and skip

obvious scale dependence. In the first two lines of (5.9) we used that TLO
i does not depend

on fraction z. Then one can perform integration over external variable z

∫ 1

0
dz ULL

B (z, z′) = ULL(z′) (5.10)

that simplifies the evolution. In the numerical calculations we have used for ULL(z′) simple

approximation that was found in [13]. Therefore we obtained

∫ 1

0
dz ULL

B (z, z′)∗(ξB
π )BLO(z′) =

(
−παS(µhc)

CF

Nc

fBfπ

KF λB mb

) ∫ 1

0

dz

z̄
ϕπ(z, µhc)U

LL(z),

(5.11)

where we used standard notation

λ−1
B =

∫
dω

ω
φB(ω, µhc) . (5.12)

Assuming the following ansatz for the pion DA amplitude

ϕπ(u, µhc) = 6u(1 − u) + aπ
2 (µhc)C

3/2
2 (2u − 1) + aπ

4 (µhc)C
3/2
4 (2u − 1), (5.13)

one obtains (useful technical details can be fond in [13] ):

∫ 1

0

dz

z̄
ϕπ(z)ULL(z) = 2.72 (1 + aπ

2 + aπ
4 ). (5.14)

The similar calculation for the next-to-leading contribution gives

∫ 1

0
dz ULL

B (z, z′) ∗
[αS

2π
(ξB

π )NLO(z′)
]

=

∫
dz′ ULL(z′)

αS

2π
(ξB

π )NLO(z′, µhc)

= αS fBfπ/KF

∫ 1

0
dz′ ULL(z′)

∫ ∞

0
dω

∫ 1

0
dx φB(ω)

[αS

2π
JNLO(z′, x, ω)

]
ϕπ(x)

=

(
−παS

CF

Nc

fBfπ

KF λBmb

)
αS

π

(
(1 + aπ

2 + aπ
4 )

〈
L2

〉
− [3.93 + 8.15aπ

2 + 10.05aπ
4 ] 〈L〉+

[3.0 + 10.10aπ
2 + 16.60aπ

4 ] ) , (5.15)
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where we introduced

〈L〉 = λB

∫ ∞

0
dω φB(ω) ln

[
mbω

µ2
hc

]
,

〈
L2

〉
= λB

∫ ∞

0
dω φB(ω) ln2

[
mbω

µ2
hc

]
. (5.16)

The last term in eq. (5.9) with the convolution of the next-to-leading coefficient function

can be represented in following form:

∫ 1

0
du ϕπ(u)

∫ 1

0
dz

αS

2π
TNLO

i (u, z)

∫ 1

0
dz′ULL

B (z, z′)(ξB
π )LO(z′, µhc) = (5.17)

=

(
−παS(µhc)

CF

Nc

fBfπ

KF λB mb

)
αS

2π




∑

m,n=0,2,4

t mn
i am

π (mb)a
n
π(µhc)




where the moments t mn
i :

tmn
i =

Ci

2Nc
tmn
D +

Ci±1

Nc
tmn
ND, (5.18)

tmn
D(ND) =

∫ 1

0
du 6uū C3/2

m (u − ū)

∫ 1

0
dz TNLO

D(ND)(u, z)

∫ 1

0
dz′ULL

B (z, z′)6z C3/2
n (z − z̄)

(5.19)

have been computed numerically. If the evolution is switched off our results are in agree-

ment with the moments computed in [15], see equations (54,55). Performing the evolution

and with the scale fixed as described above we obtained:

t00D = 73.64 + 13.85iπ t02D = 66.80 + 16.70iπ t04D = 66.85 + 17.74iπ

t20D = 27.94 + 21.22iπ t22D = 23.86 + 28.46iπ t24D = 24.44 + 32.10iπ

t40D = −12.74 + 22.61iπ t42D = −9.11 + 31.37iπ t44D = −7.71 + 34.67iπ

(5.20)

t00ND = −7.34 − 14.24iπ t02ND = 33.15 − 17.43iπ t04ND = 69.63 − 18.21iπ

t20ND = −201.69 − 39.87iπ t22ND = −180.99 − 39.19iπ t24ND = −164.74 − 39.28iπ

t40ND = −371.10 − 51.01iπ t42ND = −347.00 − 49.66iπ t44ND = −335.62 − 49.63iπ

(5.21)

In order to compute branching fractions we used the set of input parameters given in

the table below. The values for the coefficient functions C3,4,6,8eff are taken also from [17].

For the pion LCDA we use a simple model with two Gegenbauer moments aπ
2,4 (5.13).

Our estimates of the moments based on the results obtained in [31, 32]. The evolution of

these moments from initial scale µhc to scale mb have been computed with the next-to-

leading logarithmic accuracy for the leading order contribution (the first term in (5.9)). To

perform this two-loop evolution we have used the analytical results derived in [33].

For the B-meson LCDA we accept a simple model with exponential behavior which is

very popular in phenomenological applications

φB(ω) =
ω

λ2
B

exp (−ω/λB) .
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fπ 131 MeV

aπ
2 (1.5GeV) 0.25±0.15

aπ
4 (1.5GeV) -0.05±0.15

fB 200±30 MeV

λB(1.5GeV) 0.35±.15 GeV

f0 0.28±0.05

mB 5.28GeV

mpole
b 4.8GeV

mpole
c 1.8GeV

|Vub| × 103 |Vcb| × 103 γ τB , ps C3(mb) C4(mb) C6(mb) C8eff (mb)

3.7+1.3
−0.8 [30] 41.4 62◦ 1.53 0.012 -0.030 -0.035 -0.143

Table 1: Numerical values of the phenomenological parameters used to compute branching frac-

tions.

Then one can easily calculate the moments introduced in eq. (5.16):

〈L〉 = ln

[
mbλB

µ2
hc

]
− γE ,

〈
L2

〉
= ln2

[
mbλB

µ2
hc

]
− γE +

π2

6
,

where γE = 0.577 . . . . With the given above central value of λB one obtains

〈L〉 = −0.87,
〈
L2

〉
= 2.4

For QCD running coupling αS we use the two loop approximation with QCD scale Λ
(5)
QCD =

225MeV. Recall, that in our numerical estimates of the branching fractions we neglect EW-

penguins contributions but include QCD penguins in the NLO approximation as given

in [9]. As it was observed in those papers, the values of the pion branching fractions

are very sensitive to the product |Vub| f0 . Corresponding value can be estimated from

semileptonic decay B → πlν assuming monotonic behavior of the form factor f+(q2) :

dΓ(B0 → πlν)

dq2
=

G2
F

24π2
|Vub|2

∣∣f+(q2)
∣∣2 p3

π

=
G2

F

24π2
|Vub|2

∣∣f+(q2)
∣∣2 p3

π

>
G2

F

24π2
|Vub|2 |f0(0)|2 p3

π. (5.22)

Using results obtained by BABAR collaboration in [30] for the lowest bin in q2 < 8GeV2 :

τB

∫ 8

0
dq2 dΓ(B0 → πlν)

dq2
= ∆Br(B0 → πlν) = 0.21 ± 0.13

one obtains

103 |Vub| f0 <

√√√√∆Br(B0 → πlν)
τBG2

F

24π2

∫ 8
0 dq2p3

π

× 103 = 0.72+0.20
−0.27 (1.0),
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where in brackets we show the product of the central values |Vub| and f0 from the table 1.

In order to satisfy this requirement (at least for upper bound) we accept following values

for |Vub| and f0 :

|Vub| = 0.0038, f0 = 0.23, with 103 |Vub| f0 = 0.87 . (5.23)

As one can see from table 1, such choice of the |Vub| and f0 corresponds to the lowest pos-

sible value of f0 within indicated uncertainties. First, we compute two largest branching

fractions as a functions of four parameters fB, λB , aπ
2 and aπ

4 . These results for the tree

level dominant branchings Br(B → π−π+) and Br(B → π−π0) and corresponding values

for α1,2 are presented in figure 4. We show all solutions which describe the experimental

points changing the parameters inside the intervals indicated in the table 1. As one can

observe, there exist many possible solutions that demonstrate large ambiguity due to badly

known mesons parameters. For instance, we reproduce the experimental values

106Br(B → π−π+) = 5.1 (exp: 5.0 ± 0.4), (5.24)

106Br(B → π−π0) = 5.51 (exp: 5.5 ± 0.6), (5.25)

with fB = 0.23, λB = 0.23, aπ
2 = 0.3 and aπ

4 = −0.07. Corresponding amplitudes α1,2

have following numerical structure at this point:

α1/f0 = [1.04 + 0.012i]V + (−0.030)T LO∗JLO + (−0.020)T LO∗JNLO

+ (−0.035 − 0.031i)T NLO∗JLO

= 0.96 − 0.019i, (5.26)

α2/f0 = [0.035 − 0.077i]V + (0.19)T LO∗JLO + ( 0.13)T LO∗JNLO

+ ( 0.028 + 0.060i)T NLO∗JLO

= 0.38 − 0.020i, (5.27)

where for convenience we presented the answers normalized to 1/f0. Let us briefly comment

these results. The real part of the α1 is clearly dominated by the vertex term, the

corrections from the hard spectator scattering are about 5% in absolute size. As one can

see from (5.26) the radiative corrections ( indicated as T LO∗JNLO and T NLO∗JLO) numerically

quite large with respect to LO term T LO∗JLO . The relatively large value of TNLO ∗ JLO

contribution is explained by large value of the Wilson coefficient C1 with respect to C2.

For the amplitude α2 the situation for the real part is different. The vertex contribution

is very small due to the compensation between tree and NLO contributions [9]. Therefore

the dominant term arises from the hard spectator scattering part of the amplitude. The

structure of the NLO terms here is also different: bulk of the radiative correction is due to

NLO jet function. The NLO hard spectator scattering is approximately four times smaller.

Hence obvious conclusion is that the total (jet+hard) NLO contribution is very important

for Re[α2] and almost negligible for Re[α1] respectively.

The important result of the our calculation is the imaginary part of both amplitudes

α1,2. Its value, in comparison with the value of imaginary part from the vertex contri-

bution V , is quite large and has opposite sign. Therefore the resulting imaginary parts
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Figure 4: Branching fractions and and amplitudes α̂1,2 = α1,2/f0 as functions of hadron input

parameters fB(0.02), λB(0.06), aπ
2 (0.06) and aπ

4 (0.06). The numbers in the brackets give the value

of step in the numerical calculations. The large points in the upper plots correspond to the choice

fB = 0.23, λB = 0.23, aπ
2 = 0.30 and aπ

4 = −0.07. The values of the α̂i and branching fractions

which lie outside of experimental interval are not shown.

are significantly modified. Such changes may produce sizable effect for the CP-violating

asymmetries and therefore have to be taken into account in phenomenological analysis.

The smallness of the α2 provides small value of the third branching 106Br(B → π0π0).

Its value always remains considerably smaller than the experimental value, see two bottom

plots in Fig (4). With the amplitude α2 from eq. (5.27) we obtained

106Br(B → π0π0) = 0.45 (exp: 1.45 ± 0.29)

that is three times smaller then the experimental value. Of course, there exist ambiguities

not only due to hadronic input parameters but also in the scale setting, in quark masses

and weak parameters. Such uncertainties have been already estimated in [15] and they are

quite large.

On the other side it’s possible to suppose that realistic explanation of the small theo-

retical value of the π0π0 branching can be explained by relatively large contributions of the

power corrections which have been ignored in present calculations. The key observation is

that B → π0π0 amplitude has small absolute value (∼ αS) due to cancellation among the

vertex contributions. Then it makes possible that preasymptotic effects from the power

corrections are very important especially for this case. In papers [9, 15] the model for some

contributions of the power corrections have been already introduced to estimate their effect.

In particular, the so-called ”chiral enhanced” twist-3 contributions have been considered

as a source of dominant effect. In [15] such correction strongly enhances the absolute value

of α2 compare to perturbative contribution.
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Similar situation, with small leading power term and large power suppressed corrections

occurs in hard exclusive processes. Such scenario, as expected, is realized for the pion form

factor in large Q2 limit. In that situation leading twist perturbative contribution is small

∼ O(αS) and power correction may even dominate in quite large accessible range of Q2.

For the detailed discussion of this question we refer to [34] where light-cone sum rule

approach have been used for analysis of the power behavior in Q2. The other interesting

observation, which was made in [34], is related to the ”chiral enhanced” contributions.

For the pion form factor such corrections naively could provide very strong effect as it was

observed first in [35]. But in sum rule calculations it was found that such contributions turn

out to be small. It might be understood, that the value of such corrections is overestimated

if one uses the simple model with a cutoff of the momentum fraction to ensure convergence

of the convolution integrals. If this true, then for description of B → ππ decays one needs,

probably, a different model of the power corrections than one used up to now. The detailed

discussion of this question lies beyond the scope of present consideration and we refer to

recent works dedicated to this subject [36].

6. Conclusions

We have presented the independent calculation of the next-to-leading order corrections

to the graphical tree amplitudes in B → ππ decays. Our analytical expressions are in

agreement with results obtained in [15] using a different technical approach. The obtained

results have been used for the numerical estimates of the branching fractions in BBNS

approach [9]. We have found that total ( hard plus jet ) next-to-leading correction is

relatively small for the real part of the α1 decay amplitude and provide large contribution

to the real part of α2. In the last case the dominant effect originate from the next-to-

leading contribution of the jet function. But the imaginary part which is generated by the

hard coefficient function of the hard spectator scattering term is quite large and therefore

can provide sizable contribution to the CP-violating asymmetries. Our estimates of the

branching fractions allows to make conclusion about existence of sizable effect from power

suppressed contributions, especially for branching B → π0π0 which dominated small α2

amplitude.
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A. Structure of the divergent contributions of the Feynmann integrals

Here we briefly discuss the structure of different divergent contributions and provide results

for the singular parts of the UV − and IR− integrals.

The UV −divergencies arising in the NLO diagrams are removed by the counterterms

for the four-quark operators, renormalization constants of the wave functions and QCD
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counterterms. Renormalization of the four fermion operators O1,2 is given by:

O1 = Z11Z
−2
ψ Obare

1 + Z12Z
−2
ψ Obare

2 , (A.1)

O2 = Z12Z
−2
ψ Obare

1 + Z22Z
−2
ψ Obare

2 (A.2)

where 2 × 2 leading order matrix Z reads (see for instance [17]):

Z = 1 − 1

ε

αs

4π

(
2CF − 6(CF − CA/2) −3

−3 2CF − 6(CF − CA/2)

)
(A.3)

and Zψ is the renormalization constant of the quark field in the MS-scheme.

Zψ = 1 − 1

ǫ

αs

4π
CF . (A.4)

In addition, matrix elements have to be multiplied on the corresponding renormaliza-

tion constant of the wave functions external particles. For the quark wave function such

renormalization factor is defined by

Zq = 1 + i
dΣψ

dp̂

∣∣∣∣
p̂=p

, (A.5)

where we assume off-shell IR−regularization and Σψ denotes one-particle irreducible self-

energy graphs. Such definition introduces, except UV −pole, the finite term:

1

2
(Zq − 1) = −1

ǫ

αs

4π
CF − αs

4π
CF

[
ln

µ2
R

p2
+ Zfin

]
, (A.6)

The pole part cancel UV −divergencies arising in diagrams for the matrix element. The

finite term must be included in the matching. But the same definition (A.5) is used for the

renormalization of the quark wave functions in the effective theory. One obtains similar

contribution:
1

2
(Zq − 1)fin = −αs

4π
CF

[
ln

µ2
F

p2
+ Zfin

]
, (A.7)

which is different from (A.6) only by renormalization scale µ2
F . Hence, the difference of two

expressions (A.6) and (A.7) which defines the contribution to the hard coefficient function

from such terms is proportional to ln(µR/µF ). We put µR = µF that allows to avoid

consideration of such terms. The same arguments can be repeated for the gluon wave

functions. But situation with heavy b-quark is different. The HQET wave function of the

effective filed hv is renormalized by factor Zh

Zh = 1 + i
dΣh

d(vk)

∣∣∣∣
(vk)=0

, (A.8)

where k denotes residual momentum. Then one obtains:

1

2
(Zb − 1) =

αS

4π
CF

(
−1

ε
− 2 ln

(
2(vk)

µR

)
− 3 ln

(
µR

mb

)
− 2

)
, (A.9)

1

2
(Zh − 1) =

αS

4π
CF

(
−1

ε
− 2 ln

(
2(vk)

µF

))
, (A.10)
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Color factors Xcol diagram index X

Ci

2Nc
+ Ci±1

Nc

(
CF − CA

2

)
A1, B6, C1, D6

Ci

2Nc
+ Ci±1

Nc
CF A6, C6, D1

Ci±1

Nc

(
CF − CA

2

)
A2, C2,D2, E6, F6,H1

Ci±1

Nc
CF A4, A7, B4, C7,D4, C4, E1, E2,H6

Ci±1

Nc

CA

2 A3, C3,D3, E3,H3

Table 2: The color factors of different graphs in figure 3

Hence the corresponding contribution to the hard coefficient function ( for µR = µF )

(Ti)Σh
=

αS

2π
CF

(
Ci±1

Nc

1

ū

)(
−1 − 3

2
ln

µ

mb

)
. (A.11)

After these remarks let us provide list of the singular contributions for the integrals

(JX )UV defined in (4.13) and for the soft and collinear integrals (4.22), (4.24) which appear

in graphs presented in figure 3. For simplicity, we shall indicate below index IR for the

soft and collinear integrals and define (X = A1, A2, . . .)

pole terms [(JX)hard] = −pole terms
[
(JX)soft,coll

]
= XcolJXIR (A.12)

where Xcol denotes color factor as in (4.13). The explicit expressions for Xcol are listed in

table 2.

As usually we use notation ū ≡ 1− u and MS-scheme for subtractions. For simplicity

we put µ = mb. Then

JA6UV = JC6UV = JE6UV = JF6UV = JH1UV = −JH6UV = − 1

2ūε
,

JH3UV = − 3

2ūε
,

JA4UV = JC4UV = − 1

2ε
,

JB4UV = JD4UV =
2

ε

, JB6UV = JD6UV =
2

εū
,

JA1IR =
1

ū

(
1

ε2
+

1

ε
(1 + iπ − ln[zū])

)
,

JA2IR =
1

ε

1

ū

(
−1

2
− z ln z

z̄

)
,
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JA3IR =
1

ε

1

ū
(1 + ln z̄) ,

JA4IR =
1

ε2
+

1

ε
(2 + iπ − ln[zū]) ,

JA7IR = −1

ε

1

2ū
,

JB4IR = − 1

ε2
+

1

ε
(−2 − iπ + ln[zu]) ,

JB6IR =
1

ū

(
− 1

ε2
− 1

ε
(2 + iπ − ln[zu])

)
,

JC2IR =
1

2ε2
− 1

ε

(
ln u − 1 − zū

uz
ln

[
1 − zū

1 − z

])
,

JC3IR =
1

ε2
+

1

ε

(
−1

2
+ iπ − ln u − z̄ + 2uz

uz
ln z̄ +

1 − zū

zu
ln [1 − zū]

)
,

JC4IR =
1

ε

(
1 − 1 − zū

zu
ln

[
1 − zū

z̄

])
,

JC6IR =
1

ū

(
1

2ε2
+

1

ε
(1 − ln u)

)
,

JD1IR =
1

ū

(
− 1

2ε2
+

1

ε
ln ū

)
,

JD2IR = − 1

2ε2
+

1

ε

(
ln ū − 1 − uz

zū
ln

[
1 − uz

z̄

])
,

JD3IR =
1

ε2

(
1

2ū
− 1

)
− 1

ε

(
iπ − u

2ū
− ln ū − (1 − 2uz)

ūz
ln z̄ +

(1 − uz)

ūz
ln[1 − uz]

)
,

JD4IR =
1

ε

(
−1 +

1 − uz

ūz
ln

1 − uz

z̄

)
,

JE2 = −1

ε

ln ū

u
,

JE3IR =
1

ū

(
− 1

ε2
+

1

ε

(
−1

2
− iπ +

ln ū

u
+ ln [u z̄]

))
,

JE6IR =
1

ε

1

ū

(
1 +

ln ū

u

)
,

JF6IR =
1

ū

(
1

2ε2
+

1

ε
(1 − ln z)

)
,

JH1IR =
1

ε

1

ū
,

JH3IR =
1

ū

(
1

ε2
+

1

ε

(
3

2
+ iπ − ln [z̄ū]

))
. (A.13)

Performing analysis of the main regions which contribute to the leading power accuracy we

find that many IR−contributions cancel in certain combinations of diagrams. Important

that such cancellation can be observed before computing of the integrals and therefore

provides a good check for the intermediate calculations. Taking into account the color
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factors of diagrams we have found following IR−finite combinations:

(JA1 + JB6 + JC6 + JD1)IR = 0,

(JA4 + JB4 + JC2 + JC4 + JD2 + JD4)IR = 0,

(JA1 + JB6 − JE3 + JE6 + JH1 − JH3)IR = 0. (A.14)

The remaining IR−contributions can be associated with the matrix elements of the SCET

operators which define LCDA ϕNLO
P and from factor θNLO. To obtain results for the Z0,1,2

introduced in (A.3) we have computed following expressions:

[
1

ε
Z1 + Z0

]

coll−p′
=

Ci±1

Nc
CF

(
(JE2 + JE6 + JH1)coll−p′ +

∫ 1

0
dx′ϕ

NLO
P (x′)

1 − x′

)

=
Ci±1

Nc
CF

(
1

ε

1

ū
(2 + ln ū) +

ln ū

u

)
, (A.15)

[
1

ε2
Z2 +

1

ε
Z1 + Z0

]

s/coll−p

=
Ci±1

Nc

[
CF (JA2 + JA7 + JF6)s/coll−p + (A.16)

CA

2
(JA3 − JA2 − JC2 + JC3 − JD2 + JD3 − JF6)s/coll−p +

∫ 1

0
dz′θNLO(z′)

]

=
Ci±1

Nc

[
CF

1

ū

(
1

2ε2
− 1

ε

ln z

z̄
− 1

2
− ln z

z̄

)
+

CA

2

1

ū

(
1

ε

z̄ + ln z

z̄
+ 1 +

ln z

z̄
+

ln z̄

z

)]

The pole contribution in formula (A.15) can be interpreted as convolution of the evo-

lution kernel with the leading order coefficient function TLO
i :

(Z1)coll−p′ + Z̃ψ = V ∗ t̃LO
i ∗ θLO = CF

(
−C

i±1

Nc

)
1

ū

(
3

2
+ ln ū

)
, (A.17)

where in the left side of eq. (A.17) we introduced contribution from the quark field renor-

malization, denoted as Z̃ψ. We added this term because the set diagrams in (A.15) doesn’t

have such contribution and therefore corresponding poles define non-trivial but not com-

plete part of the evolution kernel V :

V (x, u) = CF

[
x

u
θ(x < u)

(
1 +

1

u − x

)
+

1 − x

1 − u
θ(x > u)

(
1 +

1

x − u

)]

+

(A.18)

where plus-prescription denotes: [F (x, u)]+ = F (x, u) − δ(x − u)
∫ 1
0 dx′F (x′, u). The same

consideration can be carried out for the poles in (A.16). Because leading order coefficient

functions TLO
i (3.35) are independent on the momentum fraction z′, the singular (pole)

part of the form factor θNLO(z′) appears as integral
∫

dz′ θNLO(z′) and can be understood

as counterterm of the local operator JB1(s = 0) in the effective theory. We have checked

by independent calculation that expressions for the Z1,2 in (A.16) is in agreement with the
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renormalization of the local SCETI operator JB1(s = 0) (3.2):

1

ε2
Z2 +

1

ε

[
(Z1)s/coll−p + Z̃ψ +

1

2
Z̃A + Z̃g

]
= ϕLO

P ∗ TLO
i ∗ (θNLO)UV −pole (A.19)

=

(
−C

i±1

Nc

1

ū

)(
− 1

ε2

CF

2
(1 + 2ε ln [µ/(pn̄)])

−1

ε

[
CF

z̄ − 4 ln z

4(1 − z)
+

CA

2

ln z

1 − z

])
,

where we again introduced contribution from the renormalization factors for coupling Z̃g

and fields Z̃ψ,A which necessary for complete definition of the evolution kernel. Equa-

tion (A.19) is in agreement with known results for the evolution JB1 obtained in [13, 24].

B. Finite contributions of the hard integrals (JX)hard

In the second part of appendix we present the finite contributions of the hard integrals

(JX )hard introduced in (4.22) and (4.23). We shall write

finite terms [(JX)hard] = XcolJX (B.1)

As usually, we assume µ = mb in order to simplify the formulas.

JA1 =
2

ū
− 7π2

12 ū
− ln ū

ū
+

(1 + z) ln z̄

2 ū z
+

(3 z − 2) ln z

2ū z̄
+

ln2(z ū)

2 ū
+

iπ (1 − ln[ū z])

ū
,

JA2 = −1

ū
+

ln ū

2ū
+

(
−3 z

2
+ z ln ū

)
ln z

ū z̄
+

z ln2z

2 ū z̄
− iπ

(
1

2ū
+

z ln z

ūz̄

)
,

JA3 =
2

1 − u
− ln(1 − u)

1 − u
+

ln(1 − z)

2 (1 − u) z
− ln(1 − u) ln(1 − z)

1 − u

− ln2(1 − z)

2 (1 − u)
+

iπ (1 + ln z̄)

1 − u
,

JA4 = 4 − 7π2

12
− 3 ln[ūz]

2
+

ln2[z ū]

2
+ iπ

(
3

2
− ln(ū z)

)
,

JA6 = − iπ

2 ū
− ln z̄ + z − z ln(ū z̄)

2 ū z
,

JA7 = − iπ

2 ū
− 2 − ln ū

2 ū
,

JB4 = iπ ln[u z] +
7π2

12
+

1

2
(3 − ln2[uz]) ,

JB6 =
1

ū

(
iπ ln(u z) +

1 − log2[u z]

2
+

7π2

12

)
,

JE1 = − ln u

2 ū
,

JE2 =
1

2u

(
−2 iπ ln ū − 3 ln ū + ln2ū+2 ln ū ln z̄

)
,
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JE3 = −1

ū
+

7π2

12ū
− ln2ū

2uū
− ln2[uz̄]

2ū
+

ln z̄

2ū
+

3

2ū
ln u + ln ū

(
3 − 2u

2uū
− ln z̄

uū

)
−

iπ
(u − 2 ln ū − 2u ln[u z̄])

2uū

)
,

JE6 =
1

2 ū u

(
4u + (3 − u) ln ū − ln2ū − u ln z̄ − 2 ln ū ln z̄ + iπ (u + 2 ln ū)

)
,

JF6 =
π2

24ū
+

2

ū
− (2 − 3 z) ln z

2 ūz̄
+

1

ū
S

( z̄

z

)
,

JH1 =
1

2 ū
(4 + iπ − ln(ū z̄)) ,

JH3 = − 7π2

12 ū
+

ln2(ū z̄)

2ū
− iπ

ln(ū z̄)

ū
,

JH6 =
1

2 ū
( 1 + iπ − ln(ū z̄) ) ,

JC1 = ReJC1 + iπImJC1,

ImJC1 =
z̄ (1 − 3u − z)

2 (1 − u − z)2
− u2 z̄

(1 − u − z)3
ln

[u

z̄

]
,

ReJC1 = − u2 z̄ I(u, z̄)

(1 − u − z)2
− ln u

2

(
1 +

u

ū2 z̄
− u(1 + u − z)

(1 − u − z)2

)
−

(
1

2
− u2

(1 − u − z)2
− u

2(1 − u − z)

)
ln z̄ +

(
1

2ūz̄
− u

(1 − u − z)2
− u

2ū(1 − u − z)

)
(1 − ū z)

ū
ln(1 − ū z) ,

JC2 =
π2

24

(
4

uz̄
− 3

)
−

(
1

ū
− 2 − u

2ū2z̄

)
ln u +

(
3z − 1

2uz

)
ln z̄ −

(
3

2u
+

2 − u

2ū2z̄
+

2u − 1

2uzū2

)
ln(1 − ūz) +

(
1 − 1

uūz̄

)
Li2(ū) +

(
1 − 1

uz̄

)
Li2(z) −

(
1 − 1

uūz̄

)
Li2(zū) +

S
( ū

u

)
+

(
1 − zū

u z

)(
S

(z

z̄

)
− S

(
zū

1 − zū

))

JC3 = ReJC3 + iπImJC3,

ImJC3 =
3

2
− u2

(1 − u − z)2
+

u

2(1 − u − z)
− u3

(1 − u − z)3
ln

(u

z̄

)
− ln(u z̄) ,

ReJC3 = 1 − 7π2

12
− u3 I(u, z̄)

(1 − u − z)2
−

(
3

2
− u2

(1 − u − z)2
+

u

2(1 − u − z)

)
ln u +

+

(
3 − 4u − 3

z
+

u2 (z − 1 + 3u)

(1 − u − z)2

)
ln z̄

2u
+

1

2
ln2 [uz̄] +

+

(
−3ū

2u
+

3 − 4u

2uzū2
− (2 − u)u2

ū(1 − u − z)2
− 2u(2u − 1) − u3

2ū2(1 − u − z)

)
ln [1 − ūz]

+
(1 − ū z)

u z

(
S

(z

z̄

)
− S

(
ū z

1 − ū z

))
,
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JC4 =
1

2
+

(
2 − u

uz
− 1

2uz2
− 3 − 2u

2u

)
ln z̄ −

(
3

2uz
− 1

2uz2ū

)
(1 − zū) ln [1 − zū] −

(1 − zū)

uz

(
S

(z

z̄

)
− S

(
ū z

1 − ū z

))
,

JC6 =
π2

24ū
+

3

2ū
−

(
1

ū
+

u

2ū2

)
ln u +

1

ū
S

( ū

u

)
,

JC7 =
1

2ū
+

u

2ū2
ln u,

JD1 = ReJD1 + iπImJD1,

ImJD1 = − 1

u − z
+

z̄

(u − z)2
ln

( z̄

ū

)
,

ReJD1 = − π2

24ū
− z̄ I(ū, z̄)

u − z
+

(
1

u − z
− 1

u z̄

)
ln ū +

ln z̄

u − z

−(1 − u z) ln(1 − u z)

u z̄ (u − z)
− 1

ū
S

(u

ū

)
,

JD2 =
π2

24ū

(
z − 5 − 3uz̄

z̄

)
− ln ū

uz̄
− ln z̄

zū
+

(1 − uz)

uzūz̄
ln [1 − uz] +

1 + uz̄

zū
(Li2 (u) + Li2 (z)−Li2 (uz)) − S

(u

ū

)
− 1 − uz

zū

(
S

(z

z̄

)
−S

(
uz

1 − uz

))
,

JD3 = ReJD3 + iπImJD3,

ImJD3 =
1

2 ū
+

1

u − z
+

(
1

ū
+

ū

(u − z)2
+

1

u − z

)
ln ū +

(
2 − 1

ū
− ū

(u − z)2
− 1

u − z

)
ln z̄

ReJD3 = π2

(
7

12
+

1

24ū

)
+

(
1 − uū

ū
− uz

ū
+

ū

u − z

)
I(ū, z̄) −

(
1

2 ū
+

1

u − z

)
ln ū +

1 − zu

ūz(u − z)
ln [1 − zu] −

(
u

2ū
+

1

(u − z)
+

1

ū z

)
ln z̄ − 1

2
ln2 [z̄ū] −

(z̄ − uz)

ū z
S

(z

z̄

)
+

(1 − u z)

ū z
S

(
u z

1 − u z

)
,

JD4 =
5

2
+

z̄

z
ln z̄ +

1 − uz

zū

(
S

(z

z̄

)
− S

(
u z

1 − u z

))
,

JD6 = ReJD6 + iπImJD6 ,

ImJD6 =
z̄

ū (u − z)
+

z̄ (1 − u (ū + z))

ū (u − z)2
ln

( ū

z̄

)
,

ReJD6 =
9

2 ū
+

(
1

ū
− uz

ū
+

ū

u − z

)
I(ū, z̄) −

(
1

ū
+

1

u − z

)
ln(ū z̄)

+
(1 − u z)

ū z(u − z)
ln(1 − u z),

where for brevity we used new notation S(x) :

S(x) =
1

2
ln2 (1 + x) +

∫ 1

0

dα

α
ln(1 + xα) = Li2

(
x

1 + x

)
+ ln2 (1 + x) . (B.2)

All other functions have been defined in the text.
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